La Torres de Hanói es un rompecabezas o juego matemático inventado en 1883 por el matemático francés Édouard Lucas. Este solitario se trata de un juego de ocho discos de radio creciente que se apilan insertándose en una de las tres estacas de un tablero.
Tradicional juego de madera con 8 discos.
El objetivo del juego es crear la pila en otra de las estacas siguiendo unas ciertas reglas. El problema es muy conocido en la ciencia de la computación y aparece en muchos libros de texto como introducción a la teoría de algoritmos.
El juego, en su forma más tradicional, consiste en tres varillas verticales. En una de las varillas se apila un número indeterminado de discos (elaborados de madera) que determinará la complejidad de la solución, por regla general se consideran ocho discos. Los discos se apilan sobre una varilla en tamaño decreciente. No hay dos discos iguales, y todos ellos están apilados de mayor a menor radio en una de las varillas, quedando las otras dos varillas vacantes. El juego consiste en pasar todos los discos de la varilla ocupada (es decir la que posee la torre) a una de las otras varillas vacantes. Para realizar este objetivo, es necesario seguir tres simples reglas:
- Sólo se puede mover un disco cada vez.
- Un disco de mayor tamaño no puede descansar sobre uno más pequeño que él mismo.
- Sólo puedes desplazar el disco que se encuentre arriba en cada varilla.
Existen diversas formas de realizar la solución final, todas ellas siguiendo estrategias diversas.